Nanophotonics for dark materials, filters, and optical magnetism

نویسنده

  • Mengren Man
چکیده

Man, Mengren. Ph.D., Purdue University, August 2016. Nanophotonics for Dark Materials, Filters, and Optical Magnetism. Major Professor: Kevin J. Webb. Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on twodimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that can effectively act as an ultraviolet filter without the usual sensitivity of the incident angle of the light. This is important in sensing applications where the visible part of the spectrum is to be removed, allowing detection of ultraviolet signals. Finally, achieving a magnetic material that functions at optical frequencies would be of enormous scientific and technological impact, including for imaging, sensing and optical storage applications. The challenge has been to find a guiding principle and a suitable arrangement of constituent materials. A lattice of dielectric spheres is shown to provide a legitimately homogenized material with a magnetic response. This should pave the way for experimental studies. More specifically, a graphene stack is designed, fabricated and characterized. The structure shows strong absorption of light. Spectroscopic ellipsometry is used to obtain the complex sheet conductivity of graphene. Further modeling results establish the graphene stack as the darkest optical material, with lower reflectivity and higher per-unit-length absorption than alternative light-absorbing materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulations of Negative-Index Nanocomposites and Backward-Wave Photonic Microdevices

Optical and nonlinear-optical properties of negativeindex nanocomposite as well as the feasibility of a design of novel photonic microdevices and all-optical data processing chips are numerically simulated. Keywords—Numerical simulation, nano materials and nanostructures, negative-index metamaterials, nanophotonics, nano and micro devices, all-optical switches, optical frequency narrow-band fil...

متن کامل

Nanophotonic Image Sensors

The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative ...

متن کامل

Enhancement of artificial magnetism via resonant bianisotropy.

All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical mater...

متن کامل

Artificial Structural Color Pixels: A Review

Inspired by natural photonic structures (Morpho butterfly, for instance), researchers have demonstrated varying artificial color display devices using different designs. Photonic-crystal/plasmonic color filters have drawn increasing attention most recently. In this review article, we show the developing trend of artificial structural color pixels from photonic crystals to plasmonic nanostructur...

متن کامل

Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient excha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017